
Time-dependent real-space renormalisation group for the Ising system on a triangular lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 L129

(http://iopscience.iop.org/0305-4470/11/6/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 6, 1978. Printed in Great Britain 

LE'ITER TO THE EDITOR 

Time-dependent real-space renormalisation group for the 
Ising system on a triangular lattice 

Ya'akov Achiam? 
Department of Mathematical Physics, University of Birmingham, Birmingham B15 2TT, 
TJK 

Received 22 March 1978 

Abstract. A real-space renormalisation group analysis of Glauber's equation of motion for 
a two-dimensional king system on a triangular lattice is carried out up to the second order 
of the cumulant approximation. The calculations yield two dynamic modes, and a value 
z = 2.2 is found for the dynamic exponent. 

In the last few years, progress has been made in the understanding of critical dynamics 
using the renormalisation group (RG) technique (Hohenberg and Halperin 1977). 
Most of the work on this subject is based on the E expansion around four or 
six dimensions. Recently, results obtained by the real-space static RG technique 
(Niemeijer and van Leeuwen 1974, 1976, Kadanoff et a1 1976) stimulated the 
generalisation of this method to the study of critical dynamics. Such a generalisation, 
which yields both the static and the dynamic properties of an Ising system was 
discussed by Achiam and Kosterlitz (1978). They used a first-order cumulant approx- 
imation to perform a time-dependent real-space renormalisation group (TDRS) analy- 
sis of the kinetic master equation proposed by Glauber (1963). They were able to 
confirm the existence of the dynamic scaling hypothesis (Halperin and Hohenberg 
1969, Ferrel et a1 1968) within the above approximation. They calculated the dynamic 
exponent z,  which according to the dynamic hypothesis relates the time scale 7 to the 
correlation length 6, 7 - 6' (Ma 1976a, Hohenberg and Halperin 1977). However, by 
comparison with other numerical works (see later), it is suspected that they found a 
value of z which is considerably higher than expected. The authors speculated that 
this fact is a result of the approximation which is known to give poor results for the 
magnetic exponent p (the method gives p = -0.15 instead +0-125) (Barber 1978). 

In this Letter we want to report on a study of the critical dynamics of a two- 
dimensional Ising spin system on a triangular lattice using the TDRS suggested by 
Achiam and Kosterlitz (1978). We performed the cumulant approximation up to 
second order. For the kind of block-spin transformation that we chose, it has been 
suggested that the second-order cumulant approximation should be the optimal 
choice (Hemmer and Verlarde 1976). Because the values, v = 0.95, p = 0.15, predic- 
ted by this method for the static exponents are good, we expect that the value z = 2.16 
obtained for the dynamic exponent should be a good approximation to the exact 
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value. This exponent, z ,  describes the decay of the slowest mode which is a combina- 
tion of disturbances involving magnetic-like spin operators and a sum of product of 
three nearest-neighbour (NN) spins. We have also found a faster mode which is 
critically slowed down, with an exponent z2 = 1.49. Using the nomenclature of Wilson 
and Kogut (1974), we found that the main contribution to the slowest mode comes 
from the relevant odd perturbation, but also includes contributions from irrelevant 
odd operators. A similar situation appears in the one-dimensional Ising-Glauber 
model, where one cannot perform a direct separation into slow and fast modes 
(Achiam 1978). This problem does not arise in the E expansion technique. 

In the literature we have not found calculations applicable to the triangular lattice, 
except those based on the conventional theory. However, a few attempts have been 
made to study the dynamics of the two-dimensional Ising model on a square lattice 
using a variety of different methods. The values of z which these calculations suggest 
are: 

(a )  z = 1.85 (Stoll er a1 1973); z = 2.30 (Bolton and Johnson 1976) by standard 

( b )  z = 1.4 (Ma 1976b) by RG Monte-Carlo methods; 
(c) z = 2.0 (Yahata and Suzuki 1969) by high-temperature expansion; 
( d )  z = 2.7 (Achiam and Kosterlitz 1978); z = 1.6, z = 1.77 (Kinzel 1978) by 

(e) z = 2.16 (present work) TDRS in the second order of the cumulant approxima- 

In all the above calculations, except in those by Ma (1976b), Achiam and 
Kosterlitz (1978) and the present work, the static and the dynamic properties were not 
calculated simultaneously. 

In the following we shall describe briefly the model and the basic ideas of the TDRS. 
The reader is referred to Niemeijer and van Leeuwen (1976) for a general discussion 
of the static real-space RG. We shall not enter into the details of the calculation but 
simply describe the essential parts of the method and stress the differences between 
the first-order cumulant approximation in which only one mode exists, and the 
second-order aproximation which yields two modes. 

The equilibrium properties of the two-dimensional Ising model are determined by 
a reduced Hamiltonian. I? = - H/kT = 2, K,S,(c) where Sa are extensive functions 
of the spins, U =  f 1, and K a  are the conjugate fields. The three relevant even 
operators in the second order of the cumulant approximation are the sum of first NN 
(denoted by SI), next NN (denoted by S2) and third NN (denoted by Sg) (Niemeijer and 
van Leeuwen 1974). We shall consider small deviations from equilibrium, which are 
described by 

Monte-Carlo methods; 

TDRS (first-order) cumulant approximation; 

tion (triangular lattice). 

4 ( ( ~ ,  t>=P(a, t ) /p , (c )=  1 + C  oi(U)hi(r)~l+(O(a).h(t)), 
I 

where P, = exp(@}/Z) and P(m, t )  are the equilibrium and the time-dependent 
probability distributions of the spins, respectively; the ai(@) are extensive functions of 
the spins, odd under spin reversal, and hi are the corresponding time-dependent 
effective fields. We shall denote the magnetisation by 01. The functions 02, Os and 
O4 are sum of products of three NN spins. In O2 all the spins are NN, in O3 two of 
them are next NN and in 02, two of them are third NN. In the model that we are 
studying, the approach towards equilibrium is via interaction with a heat bath and 
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governed by the kinetic equation of Glauber (1963); 

T dP(a, t)/dt = - P . ( o ) ~  Wi(ai)(l-pi)4(U, r ) =  -z 6pi4(a, t )  (1) 
i i 

where 7 is a time scale describing the effective interaction with the heat bath, and the 
operator pi  flips the spin ai: pi f (a i )  = f (  - ai). The transition probabilities Wj(aj) are 
subject to the condition of detailed balance which ensures that P(a, m)=P,(a). A 
convenient choice for W is, 

W.(Uj) = (Pe( - aj)/Pe(Uj))? (2) 

It can be shown that different forms of Wj only lead to the appearance of dynamic 
transients, hence the particular form (2) does not restrict the generality of the model. 

The RG transformation is carried out exactly, as in equilibrium, using a cell-spin 
transformation T ( p ,  a) (Niemeijer and van Leeuwen 1976), 

In equation (3) time plays the role of a parameter. P(u, t) can be represented by a 
reduced Hamiltonian, P(a, r )  = exp({I?(a, t ) } ) /Z.  The time-dependent parameters of 
H(a ,  t) are transformed under the RG in the same way as the static ones. Let us 
examine the behaviour of the kinetic equation (1) under space scaling. Equation (1) 
can be written as, 

By operating on both sides of (4) with Z, T ( p ,  a) we get: 

d 
r,[P~(CL)(O(CL).Ah(t))l= - C m P ) ( O ( P ) . ~ w ) )  i (5  1 

where A and f l  are matrices which are defined by the transformation and the primes 
denote quantities with renormalised interactions. Using the definition d(t)  = n h ( t ) ,  
equation (5) becomes: 

d 
Tdt[PL(P)(O(P)* Afi2- 'W)l=  -1 i =%(P)(O(CL). m>. (6 )  

The matrix An-' can be diagonalised using right and left eigenvectors corresponding 
to a set of eigenvalues Ai .  These eigenvectors describe the dynamic normal modes of 
the system. If b(t) is the jth eigenvector, then after a time rescaling T' = A,T, equation 
(6) will have the same form as equation (4). The transformation T ( p ,  a) together with 
the rescaling of time constitutes the TDRS. Simple scaling arguments (Ma 1976a) 
connect hi to zi, the corresponding dynamic exponent, by Ai = bzi, where b is the space 
scale factor. They also guarantee the existence of the dynamic scaling hypothesis. 
The largest zi defines the slowest mode. 

The results reported previously were obtained using the block-spin trans- 
formation, 

T = [ 1 $Pa (VI -k a z  + 0 3  - ~ i ~ z f l 3 ) ] / 2 ,  
U 

where the cell cy includes the spins ( T I ,  ~2 and a3, and each spin belongs to one and 
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only one cell which has a block-spin variable pu = f 1. This block-spin trans- 
formation was suggested by Niemeijer and van Leeuwen (1974) and was shown to 
give a lowest upper bound for the equilibrium free energy by Barber (1978). The 
renormalisation of the left-hand side of (4) which defined A in ( 5 )  is the straightfor- 
ward RG of static odd perturbation as described by Niemeijer and van Leeuwen 
(1974). The trace over {a} is carried out in the cumulant approximation, where the 
intercell interactions are taken as a perturbation, V, on the intracell interactions. The 
magnetic perturbation, 01, under the RG creates interactions of the form 02, O3 and 
04. Hence these operators must be included a priori in the parameter space. 

The renormalisation of the right-hand side is more complicated. The operator R 
contains the factor Pe(a)Wi(ai) which is independent of ai. Hence the trace over ai 
can be carried out exactly. Using symmetry arguments, discussed by Achiam and 
Kosterlitz (1978), one can see that the Zi(ai) is renormalised to an operator Zh(pa)  
which does not include interactions with the block-spin pu, ai c a. Thus L?L(pu)- 
Pd(p)Wu(pa). However, by the same arguments one can see that second-order 
terms which are created by interactions of two spins via an intermediate spin, belong 
to the cell a, have a different form to the corresponding terms in P : ( p ) .  This is 
equivalent to the appearance of perturbations 0 2 ,  0 3  and 04, which have to be 
included in 9, as was mentioned earlier. 

The above approximation scheme yields two 4 X 4 matrices, A and a. Throughout 
the calculation we have assumed that ha, h3 and h4 are O( V2) .  This artificial assump- 
tion leads to a finite, self-consistent parameter space of the odd parameters. Similar 
arguments are used in the even parameter space in order to create a finite parameter 
space. This procedure contains some anomalies, e.g. the static RG contains a negative 
eigenvalue (Niemeijer and van Leeuwen 1974), and the matrices A and are almost 
singular. To overcome these difficulties we treated h3 and h4 as dependent variables, 
and represented them to O(V2)  in terms of h l .  Thus A and Cl reduced to 2 x 2  
matrices, A and h, respectively. At the static fixed point, they have the values: 

I I -0.0120 0.1481 ' 

0-8293 -0,6554 2,7721 0.6894 
-0.0377 0.3001 

A=[ 

The non-commutativity of A and h is due to the memory effects. The long-time 
behaviour is determined by the multiplication of the eigenvalues of each matrix. This 
leads to the following asymptotic eigenvalues and dynamic exponents: A 1  = 3.285, 

The following features of the cumulant approximation should be mentioned: ( a )  
the transformation T we are using does not preserve the symmetry of the lattice. This 
strongly affects the calculations involving odd perturbations which are essential to our 
study. The symmetry must be restored after each renormalisation. ( b )  The nature of 
the convergence of the cumulant approximation is not clear. However, the second- 
order approximation is assumed to be the optimal one for the static limit in the above 
spin-cell transformation. Hence we hope that it gives similar accuracy in the above 
calculation. ( c )  The main advantage of the cumulant approximation is the elimination 
of boundary effects which affect the dynamic behaviour more strongly than they do to 
the equilibrium behaviour. We conclude by remarking that the examination of the 
asymptotic solution of (1) reveals terms in 9, of order V which have special symmetry. 
These terms, which have not been discussed here are scaled with A and do not affect 
the above discussion. 

~ 1 = 2 * 1 6 5 ;  A2~2.272, ~ 2 = 1 * 4 9 .  
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